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Abstract— As robots and humans increasingly share the same
workspace, the development of safe motion plans becomes
paramount. For real-world applications, nonetheless, it is
critical that safety solutions are achieved without compromising
performance. The computation of safe, time-efficient trajectories,
however, usually requires rather complex often decoupled
planning and optimization methods which degrades the nominal
performance. In this work, instead, we cast the problem as a
graph search-based scheme that enables us to solve the problem
efficiently. The graph search is guided by an informed cost
balance criterion. In this context we present the S∗ algorithm
which minimizes the total planning time by equilibrising shortest
time-efficient paths and paths with higher safe velocities. The
approach is compatible with standards and validated both in
rigorous simulation trials on a 6 DoF UR5 robot as well as real
world experiments on a Franka Emika 7 DoF research robot.

I. INTRODUCTION

In close human-robot interaction (HRI) scenarios, physical
contact is part of the process and potentially hazardous
collisions may occur [1], [2]. Therefore, it is of primary
importance to ensure human safety in order to bring robots
outside the industrial fences. Robots deployed for HRI
require proper decision-making, motion planning, and control
capabilities that account for and ensure safety in the event
of unforeseen contacts [3], [4].

Traditional pre-collision schemes often rely on anticipatory
scaling of motion velocities – which is naturally detrimental
to performance and fluidness of interaction. Especially in in-
dustrial settings, the trade-off between safety and performance
often makes HRI applications uneconomical. Time-efficient
motion planning solutions [5], [6] are sought, which are
typically related to maximization of resources, and therefore
performance, by means of exploitation of joint and task-
space capabilities, i.e., velocities, accelerations, and jerks. The
results are, however, hardly applicable for shared workspaces
and an additional safety-layer is required that refines, scales
the time, and/or increases interpolation of the original path as
to ensure safety constraints are met. This additional layer often
degrades the nominal trajectory performance substantially.

In order to plan trajectories that are safe and fast, several
optimization-based schemes were proposed in literature
[7]–[10]. Such methods can have drawbacks in terms of
complexity, computation time, etc. In this work, instead,
we propose a search-based approach, that can be solved
efficiently by making use of a well-informed graph. This graph
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Fig. 1: Illustrative example for planning safe, time-efficient trajec-
tories. The workspace grid of a 2R planar robot is shown on the
left. For every position, the maximum safe velocity (vsafe) in the
direction of the adjacent positions is determined via the safety curve
(upper right plot) with magnitude depicted within the gray lines
– the longer, the higher the vsafe in that direction. The blue line
represents the minimum-distance trajectory via the A∗ planner; the
red the minimum-time safe trajectory from S∗. Both trajectories are
subject to the safety-curve constraint, i.e., safety is ensured at every
time instant. The bottom plot shows that the S∗ is faster than the
conventional approach as higher safe velocities can be exploited.

is obtained by combining two of our previously introduced
safety tools, namely a) the Safe Motion Unit [11], a local
trajectory scaling scheme that embeds biomechanics injury
data for safe velocity control, and b) the Safety Map, a
tool that evaluates the safety characteristics for the entire
(discretized) robot workspace or task-dependent subsets [12].
We leverage the properties of both methods in order to bridge
the gap between robot design and control. More specifically,
we connect the nodes of the safety configuration space (Safety
Map) and efficiently navigate through this field with a Lazy
approach; see illustrative example in Fig. 1. The proposed real-
time capable task-space Lazy S∗ planner generates safe and
efficient robot trajectories that comply with safety standards
(e.g., ISO/TS 15066) and the robot’s motion constraints. In
this paper, we frame the basic search problem, introduce the
novel Lazy S∗ planner, validate, and compare the approach
with a time-optimal version of A∗ along with its lazy variant,
as well as new modified safety-scaled approaches for A* and
RRT* we introduce for comparison.

Illustrative Example

To better illustrate the proposed framework and the overall
concept concerning safe and time-efficient motion planning,
let us consider a planar 2R robot. As shown in Fig. 1,
we want to compute a safe, time-efficient trajectory from



the start to the goal position for the robot1. The distance
between the discretized robot’s workspace positions is 10 cm.
For every grid position, a corresponding joint configuration
is determined via the robot’s inverse kinematics. Then, for
each position, the maximum safe velocity in the direction
of the adjacent grid positions is determined via the safety
curve depicted in Fig. 1 (upper right). These velocities are
represented by gray lines in the workspace. The longer a
line, the higher the maximum safe velocity in the considered
direction.

Provided with the distances and speed limitations between
the grid positions, and assuming that the velocity is constant
when traveling from one position to another, we can now
determine the time required to traverse through the grid. This
information can be used to find a time-efficient path from
start to goal using our proposed graph search-based algorithm.
In Fig. 1, the red line represents the minimum-time solution
obtained via B-spline interpolation. It is compared to the blue
minimum-distance trajectory. Both trajectories are subject to
the safety-curve constraint, i.e., safety is ensured at every
time instant. The bottom right figure shows that the minimum-
time trajectory is faster than the minimum-distance trajectory
because it explicitly seeks regions with lower reflected mass
that allow higher safe velocities.

II. RELATED WORK

Safety in motion planning [13] is a vivid field of research.
There exist many pre- and post-collision safety schemes in
literature [7], [8], [10], [14], [15]. The biomechanics-based
Safe Motion Unit (SMU) has often been used as a safety-
layer between planning and control. The idea is to constrain
the previously planned trajectory velocities in a sequential
manner (if necessary), which may degrade the performance
compared to the (unsafe) initial trajectory. In this work we
aim to extend the approach for a search based navigation
capturing the safety requirements. For the case of sampling
based planners [16], the overall performance is sensitive to
the sampling strategy used. Although some recent efforts
have been put to impose additional constraints like moving
obstacles [17] and danger index for safe interaction [18],
integrating safety aspects intrinsically in traditional motion
planning algorithms using dedicated safety indicators is still
an ongoing challenge [19].

In this regard, the authors in [20], [21] propose an offline
improved version of RRT-Connect that checks for collision
avoidance and safety criteria based on a predefined cost
function containing visibility, inertia and human-robot centre
of mass distance criterions is used to plan geometric paths.
However, the path that is obtained at the end is not necessarily
optimal and study does not map to injury data as we do –
hence with a poorer assessment of collision and safety. A
planner operating with an RRT paradigm where the main
idea is to grow the trees towards safer regions is presented
in [22]. However, the heuristic that they use for guiding the
expansion is based on danger fields [23], [24] which is a
generalisation of the potential field approach [25], and is able

1The robot is gravity-free and the length of each robot link is 0.5m, at
the distal end of each link a 2 kg point mass is located.

to capture only kinematic state and velocities of the particular
point of interest. We search for points in the task space in the
same vein as [26] which differs from most of the associated
literature– the benefit being more direct exploration of empty
regions in the lower dimensional task space instead of the
full configuration space. This drastically reduces the set of
potential solutions that need to be traversed.

As far as time-optimal and time-efficient motion planning
is concerned, there has been no systematic investigation apart
from heuristic-based sampling bias in the realm of sampling
based algorithms. From the few papers that are present, [27],
[28] deal with running an RRT algorithm multiple times,
improving in each run with the goal of converging to an
optimal solution. In [29] a bidirectional RRT is presented
which is probabilistically complete and uses backward search
as a guiding heuristic for the forward expansion.

A different class of algorithms that received widespread
attention in this context is graph search algorithms, similar
to ours, that spans over a finite discretization [30]–[32].
However, few approaches take safety constraints into account.
In this work, we take a fundamentally different approach
by integrating safety aspects arising from the dynamics of
the robot. This strategy reinvigorates the original decision-
making problem towards a new formulation that embeds a
cost resolution between safety and time-efficiency.

III. PROBLEM DEFINITION

In this paper, we are interested in finding a minimum-time
trajectory in free task space (TS) from an initial pose x0, for
a n-DoF robot, to a goal pose, xf (x0,xf ,∈ TS ⊆ SE(3)).
This trajectory should satisfy safety constraints in the case
of a collision and the robot’s motion constraints.

The safety constraint for dynamic collisions is given in
terms of a safety curve, a functional relation between the
robot reflected mass mu(q) in the direction of motion [33]
and the operational speed; see Fig. 1. Associated to a certain
contact geometry (blunt, edgy, or sharp) and a human body
part, a safety curve determines the maximum safe speed
vsafe for the current effective mass. For a certain application,
one may select the safety curves provided in the ISO/TS
15066, which stem from contact modeling, or a data-driven
relation between robot mass, velocity, contact geometry, and
injury as proposed in [11], for example. In the sequel, safety
curves are referred to as SCG. For the sake of simplicity, we
assume that potentially dangerous collisions with the robot
occur at the end-effector (EE) and that collisions with other
locations along the robot structure are safe, given the light
mass properties and blunt surface geometry of tactile and
collaborative robots2. In this work, we assume the human to
be (quasi-) static, however, our method can be extended to
dynamic environments, which requires additional sensors.

In our work, a planning query takes the input set
(q0,xf ,Qlim,SCG), where Qlim = {q, q, q̇, q̇, q̈, q̈, } is the
set that contains the joint position, velocity, and acceleration
limits. These limits are used to maximize resources which
combined with the safety curve SCG ensures a safe, time-
efficient trajectory. To solve a planning query, herein, we

2The extension to multiple contact locations is subject to future work.



explore a similar approach to [26], [34] for planning in task-
space. Notwithstanding, instead, we propose in this work a
modified task-space A* planner [35]. To this aim, we first
uniformly voxalize the SE(3) workspace to build a task-space
graph that accelerates the search.

The search problem is performed in the direct graph G =
(V, E), where V is the set of vertices and E is the set of edges
connecting pairs of vertices (nodes). A cornerstone of our
proposed planner are the definitions below:

• Each node v = (x,Q) ∈ V which consists of a
task-space point x ∈ TS ⊆ SE(3) and a point in
configuration space Q = {q, q̇ ∈ Rn | FKM(q) = x},
where FKM is the robot’s forward kinematics;

• The edge between two nodes, ∀i, j, (vj ,vi) ∈ E takes
a safety transition time tsafe as a cost function G, in
addition to the distance heuristic H , as in standard A*,
such that F = G+H, F : E → R+. The cost tsafe is
defined by the maxima time between robot configuration
space capabilities (Qlim) to transfer from two nodes and
the task-space safety-bounds stemming from vsafe. It
is important to note here that we normalize the time
and distance heuristic appropriately such that there is
no conflict of matching units (detailed in Sec. IV-A).

A. Formulation

Given the planning query described above and the direct
graph G = (V, E), our goal is to find the minimum-cost path
on G, starting from an initial pose vstart and ending at a goal
pose vgoal = xf . The resulting joint space trajectory must
also satisfy the robot’s position, velocity, and acceleration
constraints – in addition to being continuous and smooth, at
least C2. Since edge evaluation is usually expensive in high
dimensions, we delay it to the point when it is absolutely
necessary as in the lazy paradigm [36]. The sum of the
weights of the edges gives the true (F̂ (P)) and lazy cost
(F (P)) of a valid path P ,

F (P) =
∑
E∈P

F (E), and F̂ (P) =
∑
E∈P

F̂ (E) , (1)

The edge evaluation consists of the cost balance resolution
between time efficient motion plans and safe motion directions
guided by the heuristic function G. The safety constraint
is given by the safety curves described previously. Since
the paths are not fully evaluated in the algorithm (unlike
traditional weighted A∗), each path P can be disintegrated
into Pfront and Pback. The collision free edges in Pfront will be
fully evaluated and edges in Pback will face lazy evaluation.
Therefore, the total estimated cost F̃ (P) is designated by,

F̃ (P) = F (Pfront) + F̂ (Pback) . (2)

In this equation, the true cost F̂ steers the search in the
sense that edge evaluation, taking into account the safety
constraints and time efficiency, is postponed until the actual
intention (cost) of the planner. In other words, the framework
allows instantaneous computation of a maximum safety-aware
velocity that is computed based on the Cartesian velocity of
the robot, its reflected mass range, and contact geometries.
This information can be acquired in real-time and helps in the
decision between safety (low reflected mass) and efficiency
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Fig. 2: Concept for generating biomechanically safe robot velocities
based on [11]. The configuration-dependent robot reflected mass
m(q) is related to a safe velocity vsafe via a safety curve, which can
be derived from impact experiments or contact models. The safety-
aware instantaneous velocity bound gives us a desired joint-velocity
and convergence time to a subsequent node in the search graph.
This is compared to the joint-space constraints (position, velocities,
accelerations and jerks) to provide the worst-case convergence time
that satisfies both robot and safety constraints.

(high EE velocity). These trajectories might be deviated
from the desired nominal path that does not respect the
safety constraints. Hence, a non-greedy (likely graph-based)
approach is required to obtain the near-optimal trajectory that
resolves the cost balance between shortest path and path with
higher allowable velocities. Mathematically, the problem we
seek to solve can be stated as follows:
Problem Statement 1: Given a path planning problem
(Vfree,vstart,vgoal) and a cost function F̃ : E → R+, find
a feasible path P such that F ∗(P) =min{F̃ (P) : P is
feasible }. If such a path does not exist, report failure. More
specifically, in this work, we seek a time-optimal trajectory
based on minimum-cost-graph-search solutions that satisfies
both safety constraints in terms of Cartesian velocities – and
therefore, time costs – and joint-space robot capabilities – in
terms of position, velocities, accelerations, and jerks available.

IV. TIME EFFICIENT SAFE PATH PLANNING (LAZY S∗)
This section introduces our approach for safety-aware time

efficient trajectory generation. First, we present an overview
of the proposed planner based on the Lazy weighted A*
algorithm. Second, we introduce the safety aspects emerging
from the Safe Motion Unit and how the safety-aware time
information is fed to the planner. Finally, we show the safety
joint based optimization that we deploy during node expansion
and edge assessment in order to achieve safe planning.

A. Algorithmic details and description

Our algorithm is illustrated in Alg. 1. It starts with
initializing the OPEN and CLOSED sets as well as the
cost function on the voxelized map (lines 2, 3). The goal
is to grow and maintain a shortest path tree over the graph
G containing nodes residing in Vfree. Firstly, we set the
nodes vstart (the root of the tree) and vgoal. The algorithm
maintains two lists/queues to aid the search process. The
OPEN list stores the nodes that have been discovered using
minimum F value (line 5), but haven’t been expanded. The



already evaluated nodes are a part of the CLOSED list and
at the end form the path P . We start by setting the first
discovered node as the current node vc (line 5). Due to
space limitations, Alg. 1 only illustrates the S∗ concept
which is later implemented in a standard lazy fashion to
reduce the computational burden during edge assessment,
while iteratively removing the cheapest states from the OPEN
list until vgoal is reached.

Once the exploration starts (line 10), we proceed by
checking if the state belongs to the CLOSED list. The
algorithm terminates if a collision-free shortest path to vgoal
is found during evaluation (lines 8−9). For each neighboring
node vi, we examine feasibility using IKFAST, which returns
all possible solutions for the given pose in task space due
to redundancy. For redundancy resolution, we use a minimal
weighted norm heuristic to select the closest IK solution
qj from the current robot configuration qc to avoid larger
inefficient joint motions given by qi = argmin||qc − qi||M .
This choice of redundancy resolution is of interest as it
determines completeness features of the algorithm. Here,
M is the diagonal matrix of weights – most often given
higher importance to lower joints – qc is the current joint
configuration, and qi is the set of feasible joint-configurations
for a given node expansion and edge evaluation. The selected
IK values during exploration are stored for future use; nodes
that returned no solutions are excluded from the search tree.

1) Edge Evaluation: Time Optimal Joint Optimization
(TOJO): From the node assessment and IK mapping, we
get the direction of motion also in the joint-space. This
allows us to explore the traversal time tlim(q) between the
system in accordance to robot joint-space capabilities, i.e.,
velocities, acceleration and jerks. This alone would provide
us with a time-optimal solution if integrated directly in
the cost function (5) during edge evaluation. Nonetheless,
given our interest in finding the safety-aware time-optimal
solution to the planning problem, we integrate the safety-
aware instantaneous maximum velocity solution from [12].

Next, with the selected target joint configuration from
the IK search (obtained during node expansion as described
above), we perform a real-time optimization in the config-
uration space. Formally, we want to solve the following
problem: Given an initial joint-configuration qc and a target
configuration qd, we search for the time optimal trajectory
q∗(t), given by

tlim = min
x(t)

1 · T,

s.t.
q(0) = q0 q ≤ q ≤ q

q(tlim) = qd q̇ ≤ q̇ ≤ q̇

q̈ ≤ q̈ ≤ q̈

(3)

We adopt the approach in [37] to solve the above optimiza-
tion problem. Herein, each DoF is considered independently,
and a time synchronization is performed for every DoF that
reaches its target at the given trajectory duration.

2) Edge Evaluation: Safe velocity constraint: As men-
tioned in the previous sections, the safety curves provide
us with a relationship between the reflected mass perceived
at the end-effector mu(q) and the maximum instantaneous

Algorithm 1 S* Algorithm
1: procedure PLANMINTIMESAFETRAJ(q0,vgoal,Qlim,SCG)
2: CLOSED ← ∅, OPEN ← vstart;
3: G,H ← Initialize cost and heuristic function ;
4: while OPEN ̸= ∅ do
5: vc ← min v∈ OPEN | F (v)≤F (vi), ∀vi∈ OPEN;
6: Remove vc from OPEN;
7: CLOSED← Add vc to closed list;
8: if vc == vgoal then
9: return CLOSED;

10: break;
11: for each neighbour vi of vc do
12: if vi ̸∈ CLOSED then
13: Qη ← Find η IK solutions for x← vi;
14: Update vi ← Solve redundancy resol. Qη;
15: tlim ← opt-time (3) w/ (Qlim,qd←vi);
16: mu ← Get reflected mass based on x← vi);
17: vsafe ← Obtain safe velocity (mu, SCG);
18: tSMU ← Get safe traversal time (vsafe);
19: Gnew ← Update max {tSMU, tlim};
20: Hnew ← Set new H value;
21: Fnew ←Gnew +Hnew ;
22: OPEN← Add to open list;
23: continue;
24: return failure;

directional (let us denote this direction by u) safe velocity
vsafe (see Fig. 1 for illustration). The reflected mass perceived
at the end-effector in the unit direction u is given by

mu(q) =
(
uTΛν(q)

−1u
)−1

, (4)
where Λν(q)

−1 is the upper 3× 3 part of the Cartesian mass
matrix inverse Λ(q)−1 [38].

For the edge evaluation, we strive to compute the fastest
transport time satisfying safety-constraints, that is, tSMU(q).
During tree expansion (line 10 in Alg. 1), the node propaga-
tion determines the EE direction of motion. We use the joint
velocities q obtained from TOJO and the geometric jacobian
J(q) to compute the task-space directional velocity ẋu, along
the the normalized direction u. Provided with the reflected
mass at the a point of interest (POI) at the EE or payload,
we can evaluate the maximum biomechanically safe speed
vsafe with SCG; see Fig. 2. Finally, from vsafe we directly
compute the fastest transport time tSMU(q) – which is used
for resolution of the cost balance during edge evaluation.

3) Resolution of cost balance as safety heuristic: In this
section, we provide an intuition on how we resolve the cost
balance between shortest paths and and paths between higher
allowable safety-velocities. Given a graph G, we define the
optimal cost F ∗(P) for path P connecting vstart and vgoal.
During node expansion we want to minimize this cost while
satisfying the physical constraints of the robot. Therefore, the
edge asssessment cost wcost can be computed as

wcost = tsafe = max{tlim, tSMU} . (5)
In other words, our algorithm selects safer paths even when
faster options are available as depicted in the experimental
section. In the worst case, we always end up with a slower
safe path. For heuristic consistency, we define weights and
normalize both G and H before adding them up (line 21).
These weights could be tuned further for specific behaviors.



B. Remark on completeness
One common concern when new planners are introduced –

especially for sampling-based or grid-based planners in task-
space [26], [34], [39], [40] – is the concept of probabilistic
completeness, i.e., if a feasible path exists, the probability of
finding the solution approaches on as the computation time
goes to infinity [40]. Considering the space of all possible con-
figurations, task-space planners are often not complete [26],
[39]. Notwithstanding, the planner will explore all possible
grid-based task-space solutions in infinte computational time,
which are always validated in configuration space. Hence,
in our case, it is only applicable to the discrete-task-space
search, i.e., along the task-space grid. This limitation is
only due to the fact that during the edge-evaluation, the
planner stores only the greedy time-optimal choice among
null-space solutions of a given grid node – lines 12-15 of
Alg. 1. Probabilistic completeness in the configuration space
would require exploring all possible solutions and costs for the
redundancy resolution (line 12), which in turn would make
the planner less time efficient. As previously argued, this
efficiency is more valid in practical real-world applications
than configuration-space completeness [40].

C. Implementation details
We design and describe our algorithm as an extension

in the task space of the lazy version of weighted A∗, first
introduced in [41], which is a variation of the classic A∗

search algorithm that employs a one-step lookahead to reduce
the number of edge evaluations. More specifically, we want
to heuristically guide the search in a similar fashion to A∗,
which orders the search list based on a sum of the cost and
an estimation of the same which in our case is the safety
heuristic. Firstly, we seek to determine a robot’s feasibility
transitions which could be potentially observed as an analysis
within a reachability map [42], [43]. Therefore, we discretize
the workspace and use IKFast [44] to check for feasibility of
a neighboring node during expansion. If a feasible solution
is found, we evaluate the edges and search for the path
considering that node. Secondly, to accelerate graph search for
effective implementation, and alleviate the influence of high
dimensionality in time-perfomance we evaluate the discretized
workspace in a 4D approach3. The orientation, in this case, is
computed through an interpolated and relative distance from
the original orientation to the goal orientation,

rc = exp(log(r∗0r1)c) , (6)
where r0 , r1, and rc depict the quaternion orientation of
the starting, ending and current poses. The scalar c ∈ [0, 1]
is defined along a range and represents how far along the
path the robot is at the moment, and could be selected in
different ranges of the path.

V. QUANTITATIVE ASSESSMENT AND EXPERIMENTS

This section investigates quantitative aspects of perfor-
mance and constraint satisfaction of the proposed safety-
aware time efficient planner under different conditions. All

3For a complete 6D analysis we plan to include orientation bounds that
we consider for each node v in the task space in a future investigation. Also,
robot dexterity including redundancy and self-motion will be considered.

simulated scenarios were deployed using the UR5 robot from
Universal Robots, a non-redundant 6-DoF manipulator, with
planning algorithms implemented in C++ using ROS as a
middleware. Lower level controllers and kinematics of the
robot were implemented using the DQ-Robotics library [45].
We used a modified IKFAST python plugin [46] for the safety-
aware feasibility check, and node-expansion with integration
to Ruckig [37] for time-optimal edge evaluation. For real-
world experiments, we used the 7-DoF Franka Emika robot.
As far as the contact geometry of the robot EE is concerned,
the shape of the robot’s gripper brackets is similar to the
spherical impactor with 12.5mm radius that was tested for
abdominal injury in [11]. In our experiments, we use the
safety curve of this impactor, where we reduce the safe speed
by a conservative factor of three for prevention of execution
of potentially “unsafe” motions given the inertial parameters.

A. Planning Efficiency: A comparison study
To measure the performance of the proposed planning

scheme, also to compare with existing alternative planners that
can be adapted to account for both safety and performance,
we devised a set of 100 scenarios (in an obstacle free
environment) in Coppelia Robotics simulated environment
[47] – running the physical engine Bullet 2.78. Although
computational costs can be critical in search-based planning
for online applications, our non-optimized code is used in an
offline fashion for the experiments.

As pointed out in Sec. II, existing decoupled strategies
usually limit the speed of the nominal planned trajectory
to comply with the safety criteria. This planning scheme is
defined as the baseline for comparison. Notice that this exact
planning design does not exist in literature and comparison
with existing frameworks mentioned in the related work is
part of the future work. Hence, for comparison purposes in
addition to the proposed S∗ and Lazy-S∗ planners, we also
propose four new sub-optimal motion planners:

1) A∗+ SJBO,
2) Lazy-A∗+ SJBO,
3) RRT∗+ SJBO,
4) Lazy-A∗ + TOJO

The first three planners are based on traditional graph and/or
road-map approaches embedded in the configuration space.
They frame the problem as a graph-search for the shortest
path. In the formulation of the three aforementioned planners,
we obtain the shortest-path result, as expected from the
planners, and evaluate the resulting joint-trajectory by means
of the Safety-Joint-Based-Optimizaton (SJBO). The SJBO
scheme, based on Ruckig algorithm [37] together with the
safety-margins, redefines the time between resulting nodes
to satisfy the task-space safety-velocity constraints and joint
velocity, acceleration, and jerk constraints. Notice that this
can be viewed as a cascade solution from higher level motion
planning to joint-level safety-aware optimization. On the other
end, the 4th approach, Lazy-A∗ + TOJO, aims to find the path
that takes the shortest time to the goal without considering
the safety effects.

Table I summarizes the average time-to-goal execution time
(i.e., the time required to complete the motion task given the



TABLE I: Planning efficiency and comparison between the proposed planners in 100 randomized scenarios under different environment
conditions. Quantitative assessment includes the average time from starting to goal pose, whilst satisfying safety constraints, the total path
length in both Cartesian and joint space normalized against the nominal-non-safe trajectory from A∗, success rate, the average maximum
velocity (and the velocity-ratio) normalized from the maximum velocity stemming from safety criteria.

A∗+ SJBO Lazy-A∗+
SJBO RRT∗+ SJBO Lazy-

A*+TOJO S∗ Lazy-S∗

Time to Goal (s) 6.7865 ±
2.1735

6.3302 ±
1.7094 5.3516 ± 2.7771 2.3181 ±

1.5343
3.6030 ±

2.3363
3.4175 ±

2.3219
Safe Yes Yes Yes No Yes Yes
Joint-space
Length (rad) 22.8664 22.3804 5.3645 9.4249 11.6896 10.9286

Success rate (%) 91 94 100 95 100 93
Max. EE Velocity
(m/s) 0.2654 0.2625 0.2222 0.4272 0.5331 0.5409

Velocity-Ratio 0.1591 0.1609 0.2387 0.8591 0.2454 0.2756
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Fig. 3: Trajectories obtained from the three approaches during real
robot experiments. The weights on the heuristics are - A*(2), Time-
Optimized A*(0.4), and S*(0.05).

safety-constraints), path length in Cartesian space, success
rate (if the robot was able to reach the goal), and average
velocity rate (normalized by the instantaneous safety velocity
constraints).

As expected, S∗ gives the best performance in terms of
time taken to reach the goal while still being safe. Lazy S∗

finds paths faster than S∗ due to reduced edge evaluations.
The lower success rate, as compared to S∗, might be attributed
to timeouts in some cases. Due to the planning in the
configuration space, RRT∗+ SJBO results in the smallest
change in joint-configuration at each step. The Lazy-A∗

+ TOJO has the highest velocity, thus the shortest time
to the goal. Notwithstanding, this leads to unsafe motions
which raise hazard issues for HRI scenarios. Indeed, the
time-efficiency of the Lazy-A∗ + TOJO was obtained in
exchange of having 70.5% of the trajectory outside the safety

bounds. Our proposed solution, instead was able to achieve
sufficient time-efficiency performance (47% slower than the
unsafe planner) without compromising safety. In contrast to
other planners that satisfy safety constraints in a decoupled
manner, the Lazy-S* was able to achieve higher performance.
Indeed, similar trajectories planned with RRT*+SJBO, Lazy-
A*+SJBO, and A*+SJBO took overall 56.6%, 85.2%, and
98.6% more time to be completed, respectively.

B. Real robot experiments
In this experiment, the Franka Emika robot performs a

pick and place task in the vicinity of a human. The goal is
to analyze the performance of the robot with three different
planners: (a) Time-optimal planner (b) Time-optimal planner
with velocity scaling (c) Lazy S∗ planner. Figure 3 shows
the data collected from the experiment. The nominal velocity
scaling strategy, although remaining restricted inside the safe
zone takes double the time to finish the same path length as
compared to other approaches. The Lazy S∗ planner is able
to maintain the Cartesian EE velocity in accordance with the
safe velocity bound vsafe. However, with an implementation
of time-optimized path without our safety heuristic following
the same initial conditions and parameters, the EE violates the
safe velocity threshold, thereby making the setup unsuitable
for close human-robot collaboration. Furthermore, we also see
in Fig. 3 (bottom right corner) that our heuristic influences the
planner to explore different paths to the goal. This validates
our hypothesis presented in Fig. 1 where we claim that S∗

produces time-efficient yet safe trajectories.

VI. CONCLUSION

This paper presents a novel framework for integrating safety
constraints into motion plans that are optimized w.r.t. time. We
introduce the S* algorithm (along with its lazy variant), which
terminates in a finite number of iterations and is cost effective.
Simulation studies and real robot experiments highlight the
fact that our method respects the safety requirements during
task execution. In future works, we plan to extend the method
to be able to run online with dynamic obstacles and perform
further experimental validation in realistic HRI applications.
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